KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ BẬC 2

Khảo sát hàm số là chuyên đề không khó với nhiều học sinh. Đây cũng là 1 chuyên đề mà có thể nhiều bạn cảm thấy thích thú.Bạn đang xem: Khảo sát sự biến thiên và vẽ đồ thị hàm số bậc 2

Tuy nhiên cũng còn khá nhiều em chưa hiểu rõ và nhớ được các bước khảo sát hàm số bậc 2, trong bài viết này sẽ hướng dẫn chi tiết các bước khảo sát hàm bậc 2, vận dụng vào bài tập để các em hiểu rõ hơn.

Bạn đang xem: Khảo sát và vẽ đồ thị hàm số bậc 2

I. Khảo sát hàm số bậc hai y = ax2 + bx + c (a ≠ 0):

• TXĐ : D = R.

• Tọa độ đỉnh I (-b/2a; f(-b/2a)). f(-b/2a) = -Δ/4a

• Trục đối xứng : x = -b/2a

• Tính biến thiên :

 a > 0 hàm số nghịch biến trên (-∞; -b/2a). và đồng biến trên khoảng (-b/2a; +∞)

 a 0


*

* a 0, parabol (P) quay bề lõm xuống dưới nếu a II. Bài tập áp dụng Khảo sát hàm số bậc 2* Ví dụ 1 (Bài 2 trang 49 SGK Toán 10 CB): Lập bảng biến thiên và vẽ đồ thị hàm số:

a) y = 3x2 – 4x + 1

d) y = -x2 + 4x – 4

* Lời giải:

a) y = 3x2 – 4x + 1 ( a = 3; b =-4; c = 1)

TXĐ : D = R.

Tọa độ đỉnh I (2/3; -1/3).

Trục đối xứng : x = 2/3

Tính biến thiên :

a = 3 > 0 hàm số nghịch biến trên (-∞; 2/3). và đồng biến trên khoảng 2/3 ; +∞)

bảng biến thiên :


*

(P) giao trục hoành y = 0 : 3x2 – 4x + 1 = 0 x = 1 v x = ½ Các điểm đặc biệt :

(P) giao trục tung : x = 0 => y = 1

Đồ thị :


*

Đồ thị hàm số y = 3x2 – 4x + 1 là một đường parabol (P) có:

Đỉnh I(2/3; -1/3).Trục đối xứng : x = 2/3.parabol (P) quay bề lõm lên trên .

d) y = -x2 + 4x – 4

TXĐ : D = R.

Trục đối xứng : x = 2

Tính biến thiên :

a = -1 2 + 4x – 4 = 0 x = 2

(P) giao trục tung : x = 0 => y = -4

Đồ thị :


*

Đồ thị hàm số y = -x2 + 4x – 4 là một đường parabol (P) có:

Đỉnh I(2; 0).Trục đối xứng : x = 2.

Xem thêm: Jeez Vs Geez Là Gì ? Top 10 Thán Từ Phổ Biến Nhất Của Người Anh

parabol (P) quay bề lõm xuống dưới .

* Ví dụ 2: Cho hàm số :y = f(x) = ax2 + 2x – 7 (P).

Tìm a để đồ thị (P) đi qua A(1, -2)

* Lời giải:

Ta có : A(1, -2) ∈(P), nên : -2 = a.12 + 2.1 – 7 ⇔ a = 3

Vậy : y = f(x) = 3x2 + 2x – 7 (P)

* Ví dụ 3: Cho hàm số :y = f(x) = ax2 + bx + c (P).

Tìm a, b, c để đồ thị (P) đi qua A(-1, 4) và có đỉnh S(-2, -1).

* Lời giải:

Ta có : A(-1, 4) ∈ (P), nên : 4 = a – b + c (1)

Ta có : S(-2, -1) ∈ (P), nên : -1 = 4a – 2b + c (2) 

(P) có đỉnh S(-2, -1), nên : xS = -b/2a ⇔ 4a – b = 0 (3)

Từ (1), (2) và (3), ta có hệ : a-b+c=4 và 4a-2b+c=-1 và 4a-b=0

Giải hệ này được: a=5; b=20; c=19 

Vậy : y = f(x) = 5x2 + 20x + 19 (P)

III. Bài tập khảo sát hàm số bậc 2 tự giải

* BÀI 1 : cho hàm số bậc hai : y = f(x) = x2 + 2mx + 2m – 1 (Pm). đường thẳng (d) : y = 2x – 3

a) Khảo sát và vẽ đồ thị của hàm số khi m = 2.

c) Tìm m để (d) cắt (Pm) tại hai điểm A, B phân biệt sao cho tam giác OAB vuông tại O.

Leave a Reply

Your email address will not be published. Required fields are marked *